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Abstract Theoretical analysis of Poly-(L)-Lactic Acid

(PLLA) nanofibers is a necessary step towards designing

novel biomedical applications. This paper aims to analyze

the mechanical properties of PLLA nanofibers so that

optimal scaffolds in tissue engineering applications can be

developed. We carry out analysis of PLLA nanofibers to

estimate the mechanical properties from basic building

blocks to the nanofibrous structures. A single PLLA

nanofiber is made up of Shish–Kebab like fibrils inter-

twined together and can contain both amorphous and

crystalline phases. The elastic modulus of the Lactic acid

monomeric formation in the crystalline phase is derived

using second-derivative of the strain energy using molec-

ular dynamics simulation. The mechanical property of the

Shish–Kebab fibril is derived by homogenization. The fiber

modulus is then obtained using the Northolt and van der

Hout’s continuous chain theory. One of the significant

contributions in this paper is the use of modified continu-

ous chain theory, where a combined multiscale approach is

used in the estimation of the mechanical properties of

PLLA nanofibers. The theoretical results correlate well

with reported experimental data.

Introduction

Polymeric nanofibers are attractive materials for a wide

range of applications in the bio-medical, textile and other

emerging technologies. This is primarily due to their large

surface area to volume ratio and the unique features at the

nanometer scale [1]. Structures of fibrous polymers are

generally very flexible, and their conformation is easily

deformed against mechanical extension or induced motion

between its atoms. In any industrial application, the suit-

ability of a material and/or structure relies significantly on

their physical properties, especially their mechanical and

electrical properties. Whilst the mechanical design ensures

dimensional stability and structural integrity, the electrical

design aims to fulfill the functionality of the products.

In recent years, polymeric nanofibers have been devel-

oped for a variety of applications such as tissue engineering,

molecular filters, sensors and protective clothing [2–6]. For

example, polymeric nanofibers can be used to form nano-

fibrous scaffolds for tissue engineering application [7].

These polymeric scaffolds allow cells to proliferate and

grow into tissues with defined sizes and shapes for trans-

plantation purposes [8, 9]. An understanding of the struc-

ture–property relationship is essential for the engineering

applications of polymeric nanofibers since they are affected

by the mechanical properties arising from the internal

molecular structures. Tremendous savings in cost can be

achieved if preliminary experimental designs can be eval-

uated theoretically to eliminate inferior designs and reduce
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the number of experiments. The proposed theoretical work

in the analysis of nanofiber is primarily aimed at providing a

computational framework for the estimation of the

mechanical properties and to provide a strong connection

between experimental observations and theoretical analysis.

Fibers prepared from polymer solution or melt by con-

ventional methods (melt, dry and wet spinning) have

diameters in the range of 5–500 mm [10]. Recently, there

has been increased interest in the fabrication of nanofibers

(with diameters in the range from tens to hundreds of

nanometers) using electrospinning [1, 10, 11] for mechan-

ical characterization studies. Using molecular dynamics

(MD) simulation, crystalline lactic acid monomer units are

equilibrated and thermostatted to the experimental condi-

tions by a series of NVE ensemble (Microcanonical

ensemble) and NVT ensemble (Canonical ensemble) anal-

ysis and subjected to isothermal strain conditions to obtain

the mechanical properties [12, 13]. To develop an optimal

scaffold for tissue engineering application, it is required to

manipulate the mechanical characteristics of the nanofi-

brous scaffolds. There has been numerous experimental

studies on the design of optimal scaffolds [8]. However,

very few theoretical studies exist in predicting the

mechanical properties and behavior of nanofibers under

external mechanical loads using multiscale simulation. This

paper aims to analyze the mechanical properties of PLLA

nanofibers via an atomistic-mesoscale stimulation method.

All molecular dynamics simulations were performed using

Cerius2 (version 4.6, Accelrys, Inc.) simulation package.

Analysis of the orientation process during uniaxial

drawing of a polymer has long been investigated in many

theoretical and experimental studies [7, 14, 15]. Based on

the deformation of cellulose fibers, analytical models were

developed for rodlets connected by crosslinks. These

models were modified with the various additions like cross-

linking with forces applied to the ends of the chains as well

as changes in material properties. This research lead to two

different formulations for the analysis of polymeric chains:

the rubber elasticity theory based on complex constitutive

relations and the orientation based mechanism for the

analysis of semi-crystalline polymers leading to the aggre-

gate model [16]. The fibrils in a nanofibrous material are

found to intertwine to form polymeric nanofibers. The fiber

modulus is obtained using the Northolt and van der Hout’s

continuous chain theory [14, 17–20]. This is an enhance-

ment over conventional homogenization techniques,

because the effect of shear deformation of the fibrils is not

taken into consideration. The continuum chain formulation

used in this paper gives relationships between the macro-

scopic elastic constants and the orientation parameters

based on the spatial distribution of the nanofibrils.

The paper is organized as follows. Section (Atomistic

simulation) describes the atomistic simulation of crystalline

lactic acid using MD simulation for the estimation of the

mechanical properties in the atomistic scale. Homogeniza-

tion and description of the Shish–Kebab model is discussed

in section (Shish–Kebab model—electrospun nanofibers).

The multiscale transfer of quantities of interest from the

atomistic scale to the mesoscale by micromechanical

methods is discussed in sections (Micromechanical analy-

sis) and (Continuum volume averaging: micromechanical

method). In section (Continuous chain model of polymeric

fibers), the formulation of the continuum chain model

to scaleup the material properties is discussed. Section

(Results and discussion) combines the results from various

methods and finally the paper concludes with a summary in

section (Conclusion).

Atomistic simulation

The knowledge of structure and molecular motion in

polymers is essential to understand the properties of prac-

tical interest. Theoretical simulation of the physical pro-

cesses forms the first step in this work. The estimation of

the mechanical properties of the PLLA fibers needs to be

carried out. There are various methods of estimating the

physical properties of atomistic structures, molecular

dynamics (MD) simulation being one of them and is used

here. Molecular dynamics has been a very popular tool for

the determination of mechanical, thermal and other prop-

erties of interest in atomistic structures [21–25]. The

starting point of a MD simulation is the non-relativistic

quantum mechanical time dependent Schrödinger equation.

The thermodynamic state characterized by the fixed num-

ber of atoms, volume and temperature called the canonical

ensemble [25] forms the basis of the MD simulation here.

The simulated system and the heat bath couple to form a

composite system. The conservation of the energy still

holds in the composite system but the total energy of the

simulated system fluctuates. The motion of the particles in

the system is governed by the Hamiltonian, which is a

function of the position and momentum of the particles [13,

25]. The Hamiltonian representing the total energy of an

isolated system is given as the sum of the potential and

kinetic energy terms and thermodynamic terms, as given by

H rN ; pNð Þ ¼ 1
2m

P

i
p2

i þ U rNð Þ

E pN ; rNð Þ ¼ Ek pNð Þ þ U rNð Þ
ð1Þ

where UðrNÞ is the potential energy from intermolecular

interactions as a function of the spatial ordinate rN ; 1
2m

P

i

p2
i

is the kinetic energy, which represents the momentum pi of

the particle i with mass mi and pi is a function of the

absolute temperature. The time derivative of the

Hamiltonian gives

J Mater Sci (2007) 42:8844–8852 8845

123



dH

dt
¼ 1

m

X

i

pi � _pi þ
X

i

oU

ori
� _ri ¼ 0 ð2Þ

and the spatial derivative of the Hamiltonian gives the

equation of motion as

dH

dri
¼ oU

ori
ð3Þ

The reliability of a MD simulation depends mainly on

the type of potential functions used. The total potential of

the computational unit cell is given by the sum of valence

bond energies and the nonbonding interactions

Utot ¼
X

j

X

j > i

VB
ij þ VNB

ij

h i
ð4Þ

where VB
ij is the potential energy due to bonding and VNB

ij is

the potential energy due to nonbonding interactions. The

force of attraction and repulsion (Fab) experienced by each

molecule is obtained from the gradient of the potential field

Fab ¼ �
oUtot

orab
ð5Þ

This force is used in calculating the updated position of

the atoms and is carried out by the Velocity-Verlet time

integration scheme [13]. In this analysis, the time step is

chosen in such a way that the material reaches a metastable

state at a given ambient temperature. This is normally in

the range of femtoseconds (10–15 s), and the local variation

of the velocity and the kinetic energy about a small

increment in time is very small. It has been shown that

without a sudden change in the ambient conditions, the

molecules vibrate about the mean energy position, which

ensures that there is no change in the inherent temperature

of the material. At the beginning of each time step of the

simulation, updated velocities vi (t) are calculated for each

particle by

vi t þ Dt

2

� �

¼ vi t � Dt

2

� �

þ fiðtÞ
mi

Dt ð6Þ

where Dt is the time step in the MD simulation, fiðtÞ is the

total force acting on particle i at time t and mi is the mass of

the particle. The coordinates of the particles riðtÞ are

updated from the velocities

ri t þ Dtð Þ ¼ ri tð Þ þ viðt þ
Dt

2
ÞDt ð7Þ

From the updated particle position, the interatomic for-

ces are computed from the first derivatives of the potential

energy field E with respect to the atomic coordinates ri

fiðt þ DtÞ ¼ oE

ori

� �

ðtþDtÞ
ð8Þ

The elastic constants can be obtained directly from the

variation of the potential for nanofibers [13, 23, 26]. The

total potential energy due to the strain which is the elastic

strain energy can be expanded as a Taylor series for small

displacements, with the initial position being represented

by the equillibrium position. The elastic moduli tensor can

be written as

Cabcd¼
1

2NXa

X

j 6¼i

d2U

dr2
ij

� 1

rij

dU

drij

 !

aa
ija

b
ija

c
ija

d
ijþdbd

1

rij

dU

drij
aa

ija
c
ij

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Aac¼0

2

6
6
6
4

3

7
7
7
5

ð9Þ

Here Cabcd is the elastic moduli; U ¼ UðrijÞ is the potential

energy as a function of the interatomic distance rij; Aac is the

internal stress tensor, which at equilibrium is equal to zero;

Wa is the average volume of an atom; N is the number of

atoms; dab is the Dirac-Delta function; a; b; c; d are the

spatial dimensions and aa
ij is the undeformed value of rij in

the a -direction. The deformation distance is given by

ua
ij ¼ rij � aa

ij and it is related to the strain by ub
ij ¼

aa
ijeabwhere eab are the components of the homogenous

infinitesimal strain tensor associated with atoms i and j.

The knowledge of structure and molecular motion in

polymers is essential to the understanding of mechanical

and thermal properties. The crystallization behavior of

PLLA shows that it is a semicrystalline polymer that

crystallizes from melt and from solution to form fibers [27].

Studies on crystal structure of lactide copolymers by var-

ious studies have shown that the unit cell of PLLA is a

pseudo-orthorhombic structure ða ¼ 10:6 Å; b ¼ 6:1 Å;

and c ¼ 28:8 ÅÞ, which is used here [28–31]. X-ray dif-

fraction experiments and Nuclear Magnetic Resonance

(NMR) analysis for the estimation of the fibrous and crystal

structure of PLLA has shown that the crystalline structure

of PLLA differs slightly [31] from that used by Hoogsteen

et al. [28] and De Santis et al. [29]. However, these

differences are not high enough to cause a change in the

properties of the PLLA structure. MD analysis of crystal-

line PLLA is carried out with the crystal structure and the

entire computational model is equilibrated to the experi-

mental conditions (see Fig. 1). The minimum energy con-

dition is the starting point for the thermostating analysis,

where the crystal structure is analyzed under the influence

of thermal energies. Isothermal strain conditions were

applied to the thermally equilibrated unit cell and the

elastic constants were obtained using second derivative

elastic constant analysis [13, 32].
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Shish–Kebab model—electrospun nanofibers

Orientation and extension of molecules in a polymer melt

affects the crystallization kinetics, structure and morphol-

ogy. In an entangled polymer, one of the most common

crystallization formations is the Shish–Kebab structure

[33–35]. The innermost portion of a Shish–Kebab structure

is a long and macroscopically smooth extended chain which

is crystalline in nature, called a Shish. The Kebabs are

folded chain crystalline structures entangling the Shish. The

direction of growth of the Kebab is normal to the Shish [12].

There are various views on the formation of the Shish–

Kebab structure in a crystallization process; however, in

this study we are interested only in the experimentally

observed Shish structures in some of the very latest works

on crystalline PLLA nanofibers. Shish–Kebab structure can

be found in many of the crystallization inducing processes

like electro-spinning, melt spinning, etc. [11, 15, 36].

For the polymeric nanofiber, AFM imaging also reveals

a ‘‘Shish–Kebab’’ structure [35, 36]. The elastic property

obtained from MD analysis is used in the homogenization

of the Shish–Kebab model. In this work, we are proposing

the homogenization of the Shish–Kebab model assuming

that the homogenized axial modulus of Shish is obtained

from the crystalline modulus using MD simulations and the

Kebab modulus is obtained from the average of the mod-

ulus of the RVE in all the directions (see Fig. 2). This

assumption is valid since the Shish–Kebab model consists

of only crystalline formations.

Micromechanical analysis

Direct application of the micromechanical methods for the

nanofiber raises several questions. Volume averaging of the

constituent properties is an established method of bridging

the scales [13] and it forms the preliminary basis of mul-

tiscale modeling. Here, we deal with the volume averaging

of the different elastic measures in the molecular level

drawing similarity between the macroscopic quantities,

connected by the equivalence of the strain energy due to

deformation and the change in the potential energy in an

isothermal mechanical straining process. For an elastic

composite material, the effective constitutive relations are

given by the volume average of the stress and strain.

Similarly, for each phase on the micro- and nanoscale, the

constitutive relation can be given as

rh iktot¼ Ck eh iktot ð10Þ

�h iktot is the volume averaged state of phase k, including the

matrix, fiber and any interphase layers [13]. The volume

averaging of the state variables are given by

�rab
� �

EC
¼ 1

V

Z

X

rabdv; �eab
� �

EC
¼ 1

V

Z

X

eabdv ð11Þ

�rab
� �

EC
¼ C �eab

� �
EC

Similarly, for an N particle atomic ensemble

�rab

� �
¼ 1

N

XN

i¼1

rab; �eab

� �
¼ 1

N

XN

i¼1

eab ð12Þ

�rab
� �

¼ C �eab
� �

For a simple EC, the average stresses due to the atomic

ensemble is equal to the average stress due to volume

averaging, establishing the relationship between the mate-

rial constants derived from the MD simulation and volume

Fig. 1 Computational domain of the Crystalline PLLA Unit cell

Fig. 2 Shish–Kebab model and the homogenized equivalent contin-

uum (EC) Shish–Kebab model
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averaging of the state variables for use in the structural

homogenization and micromechanical techniques. Struc-

tural models have been developed for foams and cellular

materials based on a unit cell. Though these models are

based on the information that the porosity of the material is

above 70%, this method can be used in the present analysis,

as there is a large expected range of porosity (F) of the

polymeric fiber based on experimental studies [13]. The

effective modulus (E*) by the structural model is given

as [37]

E�

E
¼ 2:3

ffiffiffi
3
p

2
1� Uð Þ

� �3

ð13Þ

Another structural-based homogenization procedure for

porous material such as foam, called the 3D open cell

material model, is from Gibson and Ashby [37]. The

effective modulus of the porous material is related to the

fiber modulus by [37]

E�

E
¼ 1� Uð Þ2 ð14Þ

According to Thelen et al. [37], the 3D open cell model

is based on assumptions of high porosity; and it gives good

predictions of modulus for materials with porosities in the

range of 10–90%. The nanofibrous materials definitely fall

in this range, and therefore, this model can be used in the

conservative prediction of the elastic modulus [27, 38, 39].

However, the major drawback of the methods mentioned

above is that the actual amount of voids present in the

nanofibers is not known for comparing with experimental

data. Hence the porosity based methods cannot be used for

a reliable estimate of the stiffness of the nanofiber and

therefore we need to look at theories that take into con-

sideration both the porosity and orientation of the nanofiber

constituents.

Continuum volume averaging: micromechanical

method

Applying the eshelby eigenstrain formulation, the effect of

the fiber phase on the matrix stress is captured by means of

an averaged strain concentration tensor [13]. The strain

concentration tensors for various morphologies of the fiber

phase are considered to cause corresponding eigenstrains

on the matrix layer. This can be analyzed using the Mori–

Tanaka (MT) method, which is detailed below.

Consider an RVE subjected to a homogenous displace-

ment boundary condition that produces a uniform strain eo
ij

in an infinite homogenous material containing an inclusion

as shown in Fig. 3. Eshelby has shown that under the above

conditions, the ellipsoidal inclusion experiences a uniform

eigenstrain e�ij. By applying the eigenstrain method, the

effective modulus of the RVE can be calculated. MT

theory was originally concerned with the calculation of

internal stress in a matrix containing inclusions with

eigenstrains. However, this theory is valid only for cases

where the volume fraction of the inclusion is small. The

MT method treats the different inclusions as distinct

regions and does not take into consideration the geometry

[40, 41]. The MT formulation used in this work follows

closely with that of Fisher et al. [40]. In a multiphase

model (i.e., material with multiple inclusions), as in the

case of a void-PLLA RVE, the different regions are

represented as distinct cylindrical phases equivalently dis-

persed in the matrix (see Fig. 4). This model is further used

in the study of fiber orientations. To elucidate the expres-

sions for MT method, we assume that the composite is

composed of K phases. The stiffness of the matrix is

denoted by Cm and the volume fraction of the matrix

is denoted by vm. The kth phase (or inclusion) has a stiff-

ness of Ck and volume fraction of vk. The dilute strain

concentration factor for the kth phase, denoted by Adil
k ,

relates the volume averaged strain in the kth inclusion to

that of the matrix [40, 41] and it is obtained from

Sk þ Cm Ck � Cm½ ��1
h i

Adil
r �

XK�1

n

vnSnAdil
n ¼ �I ð15Þ

Fig. 3 Far field strain applied to an RVE with an inclusion

Fig. 4 Idealized lamellar fibril homogenized model
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where ðk; nÞ ¼ ff ; g; . . . ;K � 1g, and Sk is the Eshelby

Tensor for the dispersed inclusions. The effective modulus

of the composite (i.e., matrix with inclusions), C, is found

from

C ¼ Cm I�
XK�1

k¼1

vkAdil
k

" #

ð16Þ

Continuous chain model of polymeric fibers

Subsequent to the homogenization of the Shish–Kebab

model, it is found that a fibril intertwines around other

fibrils to form the nanofiber. Tan and Lim [11] have

reported that a fibril might terminate by connecting another

fibril or it may branch into two others. This type of com-

plex intertwining cannot be modeled by simple homoge-

nization techniques and therefore a detailed analytical

procedures need to be considered. The deformation char-

acteristics of an oriented crystalline polymeric fiber have to

take into consideration, apart from the mechanical prop-

erties of the material, the molecular arrangement in the

nanoscale, and at larger length scales [20, 42]. The model

that we use in this paper is based on the analysis of

extension of oriented crystalline fibers called the contin-

uum chain model. However, we extend this theoretical

formulation by incorporating the effect of the smaller-scale

material properties by adequate homogenization tech-

niques. It has also been experimentally shown that a

polymeric fiber experiences shear deformation when sub-

jected to a tensile test [18]. The elastic deformation of a

crystalline fibril is the result of the extension of the chain,

which is the predominant effect, and the shear between

adjacent chains is the secondary effect [14, 43].

The continuous chain model (series model) developed

by Northolt and van der Hout [14, 20, 44] is used for the

description of the tensile deformation of the fibers (see

Fig. 5). This model describes the deformation of a poly-

meric fiber as the sum of a linear extension and a rotation

of the chains towards the fiber axis. The deformation of the

fiber is taken as the average deformation of a polymer

chain in the direction of the fiber axis as is shown in

Fig. 5. Detailed description of the continuous chain model

can be found in Northolt [27], and Northolt and van der

Hout [14]. We propose to modify the elastic and shear

modulus ðEc;GcÞ of the chain used in this model by the

homogenized elastic and shear modulus ðEcðS; vS; vkÞ;
GcðS; vs; vkÞÞ, which are functions of (1) the Eshelby tensor

(S) for the circular inclusions, and (2) the volume fraction

of the Shish and Kebab ðvS; vkÞ or an equivalent homoge-

nized structure. Thus, the effective fiber modulus is

obtained by

1

Efiber

¼ 1

EcðS; vs; vkÞ
þ

sin2h
� �

E

2GcðS; vs; vkÞ
ð17Þ

where Efiber is the fiber modulus, hsin2hiE is the strain

orientation parameter and is given by the following

equation. [14, 17]:

sin2h
� �

E
¼

Rp=2

0

q hð Þcosh sin3h dh

Rp=2

0

q hð Þcosh sinh dh

ð18Þ

The modified fibril strain can subsequently be written as

the sum of the elastic strain and the strain due to elastic

rotation or shear of the fibrils as given by

ef ¼
r

Ef S; vs; vkð Þ þ
sin2 h
� �

E

2
1� e

� r
G S;vs ;vkð Þ

� �
ð19Þ

Results and discussion

There is a wide range in the reported values of the

mechanical properties of PLLA fibers [14, 18–20, 43, 44].

These are primarily affected by various factors like rate of

drawing of the polymer, temperature and crystallinity of

the polymer material [14, 19, 44]. Most of the studies

carried out so far do not take into consideration the porosity

of the nanofiber. There have been very few studies on the

internal structure of an electrospun nanofibrous material

and most of these studies have been aimed at providing the

factors affecting the nanofiber dimensions [45, 46]. The

mechanical stiffness of the nanofiber obtained by using

Timoshenko beam theory and ordinary beam bending

theory give conservative values. These results are not

reliable since they do not capture the inherent orientation

inhomogeneity of the nanofiber. The material modeling

Fiber Axis

Fiber

Chain

Domain

Chain Segment

θ Fiber Axis

Fiber

Chain

Domain

Chain Segment

Fig. 5 Schematics of a chain, a chain segment and the surrounding

domain in the analysis using a continuous chain model
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strategy used here is novel as it considers the inhomoge-

neity of the nanofiber and the orientation of the fibrils

[7, 11, 15, 36]. This modeling procedure is carried out by

using mathematically well-established multiscale modeling

simulation techniques coupling the atomistic scale to

macroscopic scales. To the best knowledge of the authors,

such a methodology of extracting the material properties

from a completely computational point of view (indepen-

dent of experimental data) for nanofibers has not been

attempted. As homogenization methods considering only

the individual aspects of material modeling at different

scales are available in literature, a multiscale computa-

tional framework is being proposed in this work. The

material properties are extracted from the molecular to the

macro level, and finally validated with independent

experimental results. The uniqueness is in the multiscale

approach proposed here.

High strength PLLA fibers of the order of 16 GPa with

high crystallinity and porosity has been produced by dry

spinning [38]. Leenslag and Pennings have reported a tensile

modulus of 14 GPa for solution-spun PLA fibers [39].

Numerous studies by researchers have produced high

modulus PLLA fibers for various uses, having elastic

modulus ranging from 1 to 20 GPa. For example, Tan and

Lim [36] reported elastic modulus values of 1–10 GPa,

Hoogsteen et al. [28] 16 GPa, Yuan et al. [47] 1–5 GPa,

Broz et al. [48] 3.0 GPa, and Cicero and Dorgan [49]

reported 1.5–3.0 GPa for different draw ratios. Inai et al. [1]

reported the elastic modulus in the range of 2.9 ± 0.4 GPa

for semi-crystalline electrospun polymeric PLLA fibers.

Most of the above reported values were attained by the

estimation of elastic stiffness in tension. Flexural modulus

in the range of 6–9 GPa was obtained by Lim et al. [50].

The Young’s modulus obtained from MD analysis of

crystalline lactic acid should conform to the experimental

value of the modulus of crystalline PLLA [51]. The

experimentally obtained elastic modulus for a ~90% crys-

talline PLLA made by a hot drawn (melt spinning) process

is 9.2 GPa [51] and a Poisson’s ratio of 0.44 has been

reported by Balac et al. [52]. The MD simulations were

performed with a fixed time step of 1 fs and the interatomic

interactions were calculated using a Universal 1.02 force

field (UFF) of Cerius2 (version 4.6, Accelrys, Inc.) in all

the simulations [53]. This potential function includes van

der Waals, bond stretch, bond angle bend, and torsional

rotation terms. The computational unit cell was minimized

and equilibrated by NVE process. The temperature scaling

was carried out using NVT ensemble with the Nosé–

Hoover thermostat. During the minimization and NVT

processes, the atoms are allowed to equilibrate within the

fixed MD cell.

An elastic modulus of 9.44 GPa along the major axis,

and 5.71 GPa and 4.57 GPa along the minor axes with an

average Poisson’s ratio of 0.4 was obtained using MD

simulations. The resultant effective modulus of the nano-

fibrous structure obtained using Mori–Tanaka method was

5.77 GPa, by considering about 0.2 volume fraction of the

Shish in Kebab in the nanofiber. This obtained effective

modulus closely matches with many of the effective

properties obtained [28, 36, 50]. The effective modulus of

the Shish–Kebab configuration is now used in the modified

continuum chain model to obtain the variation of the

effective properties of the nanofiber with varying orienta-

tion parameter values.

The elastic stiffness calculated using the Mori–Tanaka,

3D open cell and honeycomb structure models is given in

Fig. 6. It can be seen that the predicted stiffness values has

a maximum of 5.9 GPa and decreases with an increase in

porosity. The amount of porosity is also indicative of the

diameter of the fiber, as the diameter increases the porosity

of the fiber also increases as seen from experimental

observations [11]. It can be seen from Fig. 6 that with an

increase in diameter the elastic stiffness would decrease.

This method, however, fails to provide an accurate esti-

mation of the elastic modulus of nanofibrous materials,

when compared to experiments (see, for example, Inai

et al. [1]). The average elastic property obtained by

homogenization of the Shish–Kebab model is used in the

modified continuum chain model. In this continuum chain

model, the homogenized elastic property is predicted by

Eq. 17 using the strain orientation parameter derived from

the birefringence data (Eq. 18). This analytically predicted

elastic modulus of PLLA fibers (as shown in Fig. 7) closely

matches with the experimental values of Mezghani [54].

The stress-strain curves, using the continuum chain model

and the experimentally determined values for different

draw velocities by Inai et al. [1] is compared in Fig. 8.
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From the figure, it can be seen that the predicted stress-

strain curve lies closer to the higher draw velocity curve.

The modified continuum chain model predicts a stiffer fiber

due to the inadequate information on the internal structure

of the nanofiber. With a better understanding of the internal

structure a more refined estimate of the stress-strain curve

can be obtained.

Conclusions

In this study, a multiscale modeling approach is used to

obtain the effective elastic modulus of the PLLA nanofiber.

The analysis is carried out from the atomistic level using

MD simulation to obtain the crystalline elastic modulus.

The next scale of modeling is the homogenization of the

Shish–Kebab model using the Mori–Tanaka method. Based

on this homogenization principle, the modified elastic

constants are obtained and are subsequently used in the

homogenized-continuum chain model to obtain the mac-

roscale homogenized elastic modulus. The highlight here is

the multiscale method of estimating the elastic properties

of PLLA nanofibers, as compared to previous computa-

tional procedures that depend solely on either the con-

ventional continuum chain model or atomistic simulations

only. The simulation results obtained show excellent cor-

relation with that of experiments, even without involving

any experimental data in the analysis.
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